Descriptive Statistics D:\PROJECTS\NPRA\TOPSRE~1\WINKST~1\END.DBF

Variable Name is AREA

Percentiles:		Tukey Five Number Summary:
0.0% = 0.25	Minimum	Minimum = 0.25
0.5% = 0.25		Fourth $= 1.00$
2.5% = 0.25		Median = 2.50
10.0% = 0.25		Fourth = 7.375
25.0% = 1.00	Quartile	Maximum = 121.00
50.0% = 2.50	Median	
75.0% = 7.4375	Quartile	
90.0% = 24.75		
97.5% = 115.031	L3	
99.5% = 121.00		Test for normality results:
100.0% = 121.00	Maximum	D = .343 $p <= 0.001$

Five number summary was calculated using the technique from UNDERSTANDING ROBUST AND EXPLORATORY DATA ANALYSIS by Hoaglin, Mosteller And Tukey. See complete reference in WINKS manual.

Confidence Intervals about the mean:

```
80 % C.I. based on a t(43) critical value of 1.31 is (5.30877, 13.85032) 90 % C.I. based on a t(43) critical value of 1.69 is (4.06992, 15.08918) 95 % C.I. based on a t(43) critical value of 2.02 is (2.99407, 16.16502) 98 % C.I. based on a t(43) critical value of 2.42 is (1.69002, 17.46907) 99 % C.I. based on a t(43) critical value of 2.7 is (0.77718, 18.38191)
```

The normality test suggests that the data are not normally distributed. The test for normality is a modified Kolmogorov-Smirnov test based on papers by Lilliefors and Dallal & Wilkinson. References in latenews.txt.

Endicott Horizon — Closure Areas

AREA

Descriptive Statistics D:\PROJECTS\NPRA\TOPSRE~1\WINKST~1\END.DBF

Variable Name is HEIGHT

Percentiles:		Tukey Five Number Summary:
0.0%	= 3.20 Minimum	Minimum = 3.20
0.5%	= 3.20	Fourth = 15.55
2.5%	= 3.275	Median = 65.75
10.0%	= 7.70	Fourth = 149.70
25.0%	= 14.725 Quartile	Maximum = 702.00
50.0%	= 65.75 Median	
75.0%	= 149.75 Quartile	
90.0%	= 286.85	
97.5%	= 689.4751	
99.5%	= 702.00	Test for normality results:
100.0%	= 702.00 Maximum	D = .233 $p <= 0.001$

Five number summary was calculated using the technique from UNDERSTANDING ROBUST AND EXPLORATORY DATA ANALYSIS by Hoaglin, Mosteller And Tukey. See complete reference in WINKS manual.

Confidence Intervals about the mean:

```
80 % C.I. based on a t(43) critical value of 1.31 is (82.26255, 140.86927) 90 % C.I. based on a t(43) critical value of 1.69 is (73.76234, 149.36948) 95 % C.I. based on a t(43) critical value of 2.02 is (66.38058, 156.75124) 98 % C.I. based on a t(43) critical value of 2.42 is (57.43298, 165.69883) 99 % C.I. based on a t(43) critical value of 2.7 is (51.16967, 171.96215)
```

The normality test suggests that the data are not normally distributed. The test for normality is a modified Kolmogorov-Smirnov test based on papers by Lilliefors and Dallal & Wilkinson. References in latenews.txt.

Endicott - Closure Heights

HEIGHT

Linear Regression and Correlation

D:\PROJECTS\NPRA\TOPSRE~1\WINKST~1\END.DBF

Dependent variable is HEIGHT, 1 independent variables, 44 cases.

Variable	Coefficient	St. Error	t-value	p(2 tail)
Intercept	62.082848	16.324956	3.8029412	<.001
AREA	5.1654916	.6968638	7.4124841	<.001

R-Square = 0.5668 Adjusted R-Square = 0.5564

Analysis of Variance to Test Regression Relation

Source	Sum of Sqs	df 	Mean Sq	F	p-value	_
Regression Error	536557.02 410145.2	1 42	536557.02 9765.3618	54.94492	<.001	_
Total	946702.22	43				

A low p-value suggests that the dependent variable HEIGHT may be linearly related to independent variable(s).

MEAN X = 9.58 S.D. X = 21.625 CORR XSS = 20109.1 MEAN Y = 111.566 S.D. Y = 148.379 CORR YSS = 946702.3 REGRESSION MS= 536557.021 RESIDUAL MS= 9765.362

Pearson's r (Correlation Coefficient) = 0.7528

The linear regression equation is:
HEIGHT = 62.08285 + 5.165492 * AREA

Test of hypothesis to determine significance of relationship: H(null): Slope = 0 or H(null): r = 0 (two-tailed test) t = 7.41 with 42 degrees of freedom p <= .001

Note: A low p-value implies that the slope does not = 0.

Correlation Coefficients D:\PROJECTS\NPRA\TOPSRE~1\WINKST~1\END.DBF

Variables used : AREA and HEIGHT

Number of cases used: 44

Pearson's r (Correlations Coefficient) = 0.7528 R-Square = 0.5668

Test of hypothesis to determine significance of relationship: H(null): Slope = 0 or H(null): r = 0

(Pearson's) t = 7.412484 with 42 d.f. p < 0.001 (A low p-value implies that the slope does not = 0.)

Spearman's Rank Correlation Coefficient = 0.8643

(Spearman's) t = 11.13486 with 42 d.f. p < 0.001

Linear Regression and Correlation

D:\PROJECTS\NPRA\TOPSRE~1\WINKST~1\END.DBF

Dependent variable is LOGHEIGHT, 1 independent variables, 44 cases.

Variable	Coefficient	St. Error	t-value	p(2 tail)
Intercept	3.1817412	.1206511	26.371426	<.001
LOGAREA	.7571151	.0651743	11.616771	<.001

R-Square = 0.7626 Adjusted R-Square = 0.757

Analysis of Variance to Test Regression Relation

Source	Sum of Sqs	df	Mean Sq	F	p-value	_
Regression Error	62.747518 19.528776	1 42	62.747518 .4649709	134.94936	<.001	
Total	82.276294	43				_

A low p-value suggests that the dependent variable LOGHEIGHT may be linearly related to independent variable(s).

MEAN X = .969 S.D. X = 1.596 CORR XSS = 109.464 MEAN Y = 3.915 S.D. Y = 1.383 CORR YSS = 82.276 REGRESSION MS = 62.748 RESIDUAL MS = .465

Pearson's r (Correlation Coefficient) = 0.8733

The linear regression equation is:

LOGHEIGHT = 3.181741 + .7571151 * LOGAREA

Test of hypothesis to determine significance of relationship: H(null): Slope = 0 or H(null): r = 0 (two-tailed test) t = 11.62 with 42 degrees of freedom p <= .001

Note: A low p-value implies that the slope does not = 0.

